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Abstract — Harmonic balance is a powerful technique for the simulation

of nonlinear microwave circuits. It solves directly for the steady-state

response of a circuit in the frequency domain, and so is often considerably

more efficient than traditiorraf time-domain methods when circuits exbiblt

widely separated time constants and mildly nonlinear behavior. With

harmonic balance the finear component models are evaluated in the

frequency domain, which for distributed devices results in easier model

development and rednced computational complexity.

Harmonic bafance has had fimited application for simulating circuits,

such as mixers, that have a steady-state response that contains almost-peri-

odlc signals. The reason is that to model a nonfinear device, whose

behavior is more conveniently computed in the time domain, harmonic

bafance reqnires the transformation of signals from the frequency domain

into the time domain and vice versa. For circuits that have a periodic

response, the discrete Fourier transform (DFI’) is used. Previously, no

satisfactory transform existed for almost-periodic signals. In this article, a

new Fourier transform afgoritfmr for almost-periodic functions (the APFT)

is developed. M is both efficient and accnrate. Unlike previons attempts to

solve this problem, the new algorithm does not constrain the input frequen-

cies and uses the theoretical minimum number of time points.

Also presented is a particularly simple derivation of harmonic Newton

(the algorithm that results when Newton’s method is applied to solve the

harmonic bafance equations) using the AP~ this derivation uses the

same matrix representation used in the derivation of the APFT. Since the

APFT inclndes the DFT as a special case, all results are applicable to both

the periodic and afmost-periodic forms of harmonic Newton. The simple

derivation of harmonic Newton, combined with the rigorons definition of

terms and the careful exploration of the error mechanisms of the APFT,

makes this article a good base for future research.

NOMENCLATURE

Z,ua,c

C=IR2

11.llca

The integer, real, and complex numbers.

Throughout this article, the trigonomet-

ric Fourier series is used rather than the

exponential. Thus, a Fourier coefficient

is described using the coefficients of

sine and cosine. The pair of these two

coefficients are said to reside in C as

opposed to C. C is related to C in that

[a, b]T c C corresponds to a + @ G C.

The 1~ norm. For x E R ~,

[Ixllm = max,lx,l. For A = llt~x~,

llAllm= max,X~=llalJ[.
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The Euclidean or 12 norm. For x G R ~,

11x11* = (Z~lx,?)l/2. For vectors in R ~,

the 12 and 1~ norms are equivalent.
-

That is, j&llx112s llxllm< IIx112for all

x=llt~.

Imaginary operator, j = ~.

The zero vector or matrix and the iden-

tity matrix.

Time, radial frequency.

A fundamental frequency.

An at most countable set of frequencies,

and a finite set with K elements.

The space of all periodic waveforms of

bounded variation with period T.

The space of almost-periodic functions

constructed as a linear combination of

sinusoids at frequencies in the set A.

The set of quasi-periodic functions with

fundamental frequencies Al, A z,. . . . Ad.

Equals AP(A) where A is the module

constructed from the basis of funda-

mental frequencies.

Abstract forward and inverse Fourier

operators.

Matrix representation of the forward

and inverse Fourier operators.

Arbitrary waveform and its spectrum.

x= %x.

Laplace transform relation.

Function that maps waveforms to wave-

forms. Sometime f is an arbitrary dif-

ferentiable function; other times it is

used to represent the sum of currents

entering a node or nodes.

Function that maps spectra to spectra.

Related to ~ in that if y = f(x) then

Y= F(X).

The maximum number of harmonics

considered.

The number of frequencies present in

the spectra.

The number of nodes in a circuit.

The number of time points

the sampled waveforms.

Frequency indices. Usually,

present in
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m, n Node indices. m, n G {1,2,.. ., N}.

r,s Time indices. r,s G {1,2,. . . . S}.

u, v Node voltage waveforms, spectra.

u, u Input current waveforms, spectra.

i, I Function from voltage to current for

nonlinear resistors, and its frequency-

domain equivalent.

q, Q Function from voltage to charge for

nonlinear capacitors, and its frequency-

domain equivalent.

Y Matrix-valued impulse response of the

circuit with all nonlinear devices re-

moved.

‘r Laplace transform of y.

Y Phasor equivalent to ‘1’.

G? Matrix used to multiply each particular

frequency component in a vector of

spectra by the correct u~ to perform the

frequency-domain equivalent of time

differentiation.

L INTRODUCTION

QUITE OFTEN analog and microwave circuits exhibit

characteristics or behavior that make them difficult

to simulate using traditional time-domain simulation tech-

niques. In particular, it is expensive to find the steady state

for a circuit that exhibits widely separated time constants

because the differential equation solver must continue

until any transient behavior has vanished.

Harmonic balance [1] differs from transient analysis in

that it assumes that the circuit’s steady-state response

consists of a sum of sinusoids, and proceeds to find the

coefficients of the sinusoids that satisfy the differential

equation. Thus, the steady-state solution is calculated di-

rectly and any transient is avoided. Harmonic balance is

efficient if only a few sinusoids are needed to approximate

the solution to the desired accuracy. It is attractive, there-

fore, when the circuit is driven by sinusoidal sources and

when the nordinearities are driven mildly.

Analog and microwave circuits have other characteris-

tics that are troublesome to time-domain simulators. For

example, they often contain distributed devices. All but the

most idealized distributed device models are difficult to

formulate in the time domain, requiring either a lumped

approximation or the impulse response. Once the model is

formulated, it is usually expensive to evaluate, either be-

cause the lumped approximation is of high order or be-

cause the impulse response must be convolved with the

terminal voltage waveforms.

Another characteristic that is troublesome to time-

domain simulators, and the one that provides the domi-

nant theme of this article, is that many analog and micro-

wave circuits, such as mixers, have inputs at two or more

independent frequencies. These frequencies may be such

that the ratio of the highest to the lowest frequency gener-

ated by the nonlinearities is large. For example, the down-

conversion mixer in the HP8505 network analyzer [2]

supports a maximum input frequency of 1.3 GHz with the

local oscillator frequency always offset from the input by

100 kHz. The ratio of the input to the output frequency

can be as high as 13000 to 1. Furthermore, the output is

fed directly into a high-Q low-pass filter that has a long

settling time. To simulate this circuit in the time domain

requires a sampling rate well over 1.3 GHz and a simula-

tion interval of at least 100 ps–-a minimum of 106 time

points are needed. It is difficult to present meaningful

results in the presence of such a large number of data,

particularly with the vastly different time scales involved.

Normally, this problem is avoided by converting the solu-

tion into the frequency domain, but the many unequally

spaced time points generated by the simulator, along with

the nonperiodic signals make this a difficult task.

Harmonic balance is a promising way to avoid these

problems since it operates in the frequency domain. The

computational complexity depends only on the size of the

circuit and the number of frequencies being used, and not

on the actual frequencies or the time constants present in

the circuit. Furthermore, the sollution is obtained in the

frequency domain, so the troublworne conversion needed

by a time-domain simulator to present the results is

avoided. If it is desirable to view the results in the time

domain, conversion from the frequency domain to the time

domain is not difficult.

With harrnoni~ balance, the linear device equations are

evaluated in the frequency domtin and the nonlinear de-

vice equations are evaluated in the time domain. When

signals in the circuit are periodic, the discrete ‘Fourier

transform (DFT) provides the needed conversion between

the two domains. To date however, there has been no

satisfactory way to analyze nonlin ear circuits such as mixers

that have two or more input signals with arbitrary input

frequency and power, and hence have signals that are

nonperiodic. Signals in the steady state response of mixers

are made up of several sinusoids at possibly nonharmoni-

cally related frequencies, and so are almost periodic [3].

This article introduces an accurate and efficient algorithm,

the almost-periodic Fourier tran$orrn, or APFT, for comp-

uting the forward and inverse Fourier transforms of

almost-periodic functions. Unlike previous methods, the

APFT does not constrain the input frequencies and uses

the theoretical minimum number of time points.

Harmonic balance converts a system of nonlinear in-

tegrodifferential equations into a system of nonlinear alge-

braic equations whose solution is the coefficients of the

sinusoids that make up the steady-state response. There

are several ways available to solve the algebraic system [4];

the approach we choose is Newlon’s method. We refer to

the combination of harmonic balance and Newton’s

method as the harmonic Newton algorithm. A new and

concise statement of the harmoticc Newton algorithm
is given that is valid for both the periodic and almost-

periodic cases.

Section II contains a brief summary of the notation, and

definitions used throughout the article and then formulates

the problem to be solved. Harmonic balance is introduced

in Section III as a way of converting ‘a system of in~egro-
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differential equations into a larger system of algebraic

equations that is solved for the steady-state solution. Sec-

tion IV introduces the APFT as a generalization of the

DFT and discusses its error mechanisms. In Section V the

new APFT algorithm is presented. Lastly, in Section VI,

the harmonic Newton algorithm is derived using the APFT.

Several methods are given to increase its efficiency, and

the results of applying harmonic Newton to several circuits

with almost-periodic steady-state responses are given.

IL BACKGROUND

A. Overview of Harmonic Balance

When linear circuits are excited by a sinusoid, their

steady-state response, if it exists, is sinusoidal and at the

same frequency as the input. While nonlinear circuits are

capable of a dazzling variety of wonderful and bizarre

behavior, the circuits of interest to designers generally have

a periodic steady-state response to a sinusoidal input; the

period of the response is usually equal to that of the input,

though occasionally it will be some rational multiple.

Because the response is periodic, it is representable as a

Fourier series, that is, as a linear combination of sinusoids

whose periods evenly divide the period of the response. If

the stimulus to the circuit contains two or more sinusoids

that are not harmonically related, the circuit responds in

steady state at the sum and difference frequencies of the

input sinusoids and their harmonics; such a response is

referred to as being almost periodic. Thus, for the circuits

we are interested in, a stimulus constructed as a sum of

sinusoids results in a steady-state response that is also a

sum of sinusoids. The response contains an infinite num-

ber of sinusoids; usually all but a few are negligible.

Harmonic balance differs from traditional transient

analysis in two fundamental ways. These differences allow

harmonic balance to exploit the behavior described above

for circuits in steady state and give the method significant

advantages in terms of accuracy and efficiency. Transient

analysis, which uses standard numeric integration, con-

structs a solution as a collection of time samples with an

implied interpolating function. Typically the interpolating

function is a low-order polynomial. However, polynomials

fit sinusoids poorly, and so many points are needed to

approximate the sinusoidal solutions accurately.

The first difference between harmonic balance and tran-

sient analysis is that harmonic balance uses a linear combi-

nation of sinusoids to build the solution. Thus, it naturally

approximates the periodic and almost-periodic signals

found in a steady-state response. If the steady-state re-

sponse consists of just a few dominant sinusoids, which is

common, then harmonic balance needs only a small data

set to.-iepresent the response accurately. The advantage of

using sinusoids to approximate an almost-periodic steady-

state response becomes particularly important when the

response contains dominant sinusoids at widely separated

frequencies.

Harmonic balance also differs from traditional time-

domain methods in that time-domain simulators represent

waveforms as a collection of samples whereas harmonic

balance represents them using the coefficients of the

sinusoids. (Just as in traditional time-domain methods,

where it is presumed that a polynomial is used to inter-

polate between samples, we can use samples to represent

the combination of sinusoids, with the understanding that

a sum-of-sinusoids interpolation is to be done between

samples.) Working with the coefficients and exploiting

superposition makes it possible to calculate symbolically

the response from linear dynamic operations such as time

integration, differentiation, convolution, and delay. Be-

cause linear devices respond at the same frequency as the

stimulus, it is only necessary to determine the magnitude

and phase of the response. Using phasor analysis [5], this is

easily done for lumped components such as resistors,

capacitors, and inductors; while it is not trivial for the

more esoteric distributed devices, it is generally much

easier to find their response using phasor analysis than to

try to determine their response to sampled waveforms in

the time domain.

Determining the response of the nonlinear devices is

more difficult. There is no known way to compute the

coefficients of the response directly from the coefficients

of the stimulus for an arbitrary nonlinearity, though it is

possible if the nonlinearity is described by a polynomial or

a power series [6]. We do not wish to restrict ourselves to

these special cases, nor to accept the error of using them to

approximate arbitrary nonlinearities. Instead, we convert

the coefficient representation of the stimulus into a sam-

pled data representation; this is a conversion from the

frequency domain to the time domain and is accomplished

with the inverse Fourier transform. With this representa-

tion the nonlinear devices are easily evaluated. The results

are converted back into coefficient form using the forward

Fourier transform. The computation of these forward and

inverse Fourier transforms when signals are almost peri-

odic is the kernel of this paper.

Because the coefficients of the steady-state response are

an algebraic function of the coefficients of the stimulus,

the dynamic aspect of the problem is eliminated. Thus, the

nonlinear integrodifferential equations that describe a cir-

cuit are converted by harmonic balance into a system of

algebraic nonlinear equations whose solution is the

steady-state response of the circuit. These equations are

solved iteratively using Newton’s method.

B. Definitions

A signal is a function that maps either R (the reals) or Z

(the integers) into R or C (the space of real pairs).1 The

1Throughout this article, the trigonometric Fourier series is used rather
than the exponential to avoid problems with complex numbers and
nonanalytic functions when deriving the harmonic Newton algorithm.
Thus, a signal at one frequency in a spectrum is described using the
coefficients of sine and cosine. The pair of these are said to reside in
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domain and range of the map are physical quantities; the

domain is typically time or frequency, and the range is

typically voltage or current. A signal whose domain is time

is caSled a waveform; one whose domain is frequency is

called a spectrum. All waveforms are assumed @-valued

whereas all spectra are assumed C-valued.

A waveform x is periodic with period T if x(t )=x(t+ T)

for all t.P(T) denotes the set of all periodic functions

with period T that can be uniformly approximated by the

sum of at most a countable number of T-periodic sinusoids.

Thus, P(T) consists of waveforms of the form

k=O

where a~ = 27rk/T, X$, X: G R, and

(2)

A waveform is almost periodic if it can be uniformly

approximated by the sum of at most a countable number

of sinusoids [7]. We use AI’(A) to denote the set of all

almost-periodic waveforms over the set of frequencies A.

Thus, AP(A) consists of waveforms of the form

where A = {~0, Ul, U2, “ . .}, and (2) is satisfied. If A is

finite with K elements, it is denoted A ~. If there is a set of

d frequencies { Al, A2,. . . . Ad} and A is such that

then A is a module 2 of dimension d and the frequencies

{A1, A2,..., A ~ } are referred to as the fundamental frequen-

cies and form a basis (called the fundamental basis) for A.

The sequence of fundamental frequencies { Aj } should be

linearly independent over the rationals (that is Zj=lkjA,=O

implies kl = kz = “ “ “ = k~ = O) so that each o c A cor-

responds uniquely to a sequence of harmonic indices { kj }.

If A is a module, then Al’(A) is also denoted

AP(A1, A2, ” “ :, Ad). Waveforms belonging to such a set are

referred to as quasi-periodic. Note that P(T) = M’(AJ if

Al= 27r/T, and P(T) c Al’(Al, A2, c”., Ad) if for some j,

Aj = 2T/T.

The pair X~ = [ X:, X~]~ ● C is the Fourier coefficient of

the Fourier exponent u~ and X= [Xo, Xl, X2, ” “ - ]~ is

called the frequency-domain representation, or spectrum,

of x. Conversely,’ x is the time-domain representation, or

C = R 2 rather than C. Hence, we are using C rather than C as the scalar
field to construct the vector space for spectra. The correspondence
between C and C is established by the invertible function ~: C + C that
maps a + jb to [a, b]~.

2In this module, the vectors are real numbers and the scalars are
integers. It is a module because it is closed under vector addition and
scalar multiplication.

waveform, of X. If all the frequencies ~k ● A are distinct,

(i.e., tii # o] for all i #’j) then there exists a linear invert-

ible operator %, referred to as the Fourier transform, that

maps x to X. It is a homeomorphisrn, which allows us to

talk of x- and X as two different representations of the

same signal whenever X = %x.

A collection of devices is calledl a system if the devices

are arranged to operate on input signals (the stimulus) to

produce output signals (the resj?onse). A system is in

steady state if all signals present in the system are almost

periodic and it is in periodic stea~$ state if all signals are

periodic. A. system is autonomous if both it and its stimu-

lus are time invariant, othersvise it is forced. An oscillator

is an example of an autonomous system while an amplifier,

a filter, and a mixer are all examples of forced systems.

Lastly, an algebraic or memoryless device or system is one

whose response is only a function of the present value of

its stimulus, not past or future values.

C. Problem Formulation

In the interest of keeping notation simple, we consider

only nonlinear time-invariant circuits consisting of inde-

pendent current sources and voltage-controlled resistors,

capacitors, and distributed devices. These restrictions are

mostly cosmetic; they allow the use of simple nodal analy-

sis to formulate the circuit equations. If a more general

equation formulation method such as modified nodal anal-

ysis is used [8], all results presented in this article can be

applied to circuits containing inductors, voltage sources,

and current-controlled components. We further assume

that the distributed devices are 1[near, that the circuit is

nonautonomous (or forced), and that it has a steady-state

solution.

Let N be the number of nodes in the circuit, and

assume it has an isolated asymptotically stable almost-

periodic solution u = AP~(A); t!hat is, u is a vector of

node voltage waveforms, each of which is almost periodic

on the set of frequencies A. Further assume that the

source current waveforms belong to AP’( A ), and that all

device constitutive equations are differentiable when writ-

ten as functions of voltage. Now, using Kirchhoff’s current

law, the circuit can be described by

f(u, t)=i(u(t))+ cj(u(t))

+~’ y(t-r)u(~)dr+u( t)=o (5)
–cc

where f is the function that maps the node voltage wave-

forms into the sum of the ‘currents entering each node;

te R is tim~ O = RN is the zerc~ vector; u G AP~(A) is

the vector of source current waveforms; i, q: RN ~ R N are
differentiable frictions representing, respectively, the sum

of the currents entering the nodes from the nonlinear

conductors, and the sum of the charge entering the nodes

from the nonlinear capacitors; and y is the matrix-valued
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impulse response of the circuit with the nonlinear devices

removed. 3

III. HARMONIC BALANCE

A. Derivation

When applying harmonic balance to (5), both v and

~(U) are transformed into the frequency domain. Since u is

almost periodic, both i(u) and q(u) are almost periodic;

therefore all three waveforms can be written in terms of

their Fourier coefficients; =U = V, @’i(u)= @’i(S- lV)

= I(V), and %q(u) = #q(%-IV) = Q(V). Since U, i(u)

and q(u) are vectors of waveforms— one waveform for

each node in the circuit— V, 1(V), and Q(V) are vectors

of spectra. The Fourier coefficients of the convolution

integral are computed by exploiting its linearity. Assume y

satisfies

py(t)Ty(t)dt <cc
4—*

and y(t) = O for all t < O; that is, assume y is causal and

has finite energy (or equivalently, that the circuit with all

nonlinear devices removed is causal and asymptotically

stable); then

~Jt Y(t-.).(~)~~=y~
—03

where

y= [%.1, m,n G{l,2,. ... N}

%n = [ymn(~> O], k,l~z

where m, n are the node indices; k, 1 axe the frequency

indices,

Y~u(k,l)

={[

Re{Tmn(~~~)

!m{ ~m. ( i~k)

o

–Im{~~.(j@~)}

1

ifk=l

Re{~mn(~~~)}

ifk+l

where T is the Laplace transform of y [5], and j = n.

Now (5) can be rewritten in the frequency domain as

F(V) =I(V)+flQ(V) +YV+U=O (6)

where U = S u contains the Fourier coefficients for the

source currents over all nodes and harmonics, and

Q=[$-L.1> m,n G{l,2,. ... N}

~ = [Q~~(k,l)]

{

ifm=n
mn o ifm+n

(0 ifk+l.

3To remove a nonlinear device, simply replace its constitutive equation
y=~(.x) with y=O.

‘ij;;;k2j’:,=
(a) (b)

Fig. 1. Two different ways of truncating the set of frequencies to be
finite.

That S4( u) = flQ( V) follows from the differentiation rule

of the Fourier series. Equation (6) is simply the restate-

ment of Kirchhoff’s current law in the frequency domain.

It is important to realize that the frequency-domain

functions for the nonlinear devices (1 and Q) are evaluated

by transforming the node voltage spectrum V into the time

domain, calculating the response waveforms i and q, and

then transforming these waveforms back into the frequency

domain. To ensure that the nonlinear device response

waveforms are almost periodic, we require that the nonlin-

ear devices be algebraic. If not (that is, if the device has

memory), then the response waveform has a transient

component, is not almost periodic, and cannot be accu-

rately transformed into the frequency domain. The restric-

tion that nonlinear devices be algebraic clearly allows

nonlinear resistors. Fortunately, it also allows nonlinear

capacitors and inductors (actually, any lumped nonlinear

component) because their constitutive relations are alge-

braic when written in terms of the proper variables: u and

q for capacitors, and i and + for inductors [9]. The

conversion between i and q (i = ~) and u and + (u = ~) is

done in the frequency domain, where it is an algebraic

operation and does not disturb the steady-state nature of

solution. Nonlinear distributed devices, however, are not

algebraic, and the trick of evaluating their response in the

time domain and transforming it into the frequency do-

main cannot be used. Instead, it is necessary to remain in

the frequency domain and model the nonlinear device

using a Volterra series representation. We will not consider

nonlinear distributed devices further.

B. Truncation and Discretization

To make the process of finding the solution to (6)

computationally tractable, it is necessary to truncate the

frequencies to a finite set. When stimulating a circuit at d

fundamental frequencies, the circuit responds in steady
state at frequencies equal to sums and differences of the

fundamental frequencies and their harmonics. Thus, the

set of response frequencies is a module. We propose two

ways of truncating this set to a finite number of frequen-

cies.

The first approach limits consideration to the first H

harmonics of the fundamental frequencies:

A~(Xl,Az,. .- ,~~) = {tilo=kl~l+kz~z+ ..- +kJ~;

kJ G Z; Ikjl < H for 1< j < d; first nonzero k, positive}

(7)
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1
where K = ~ ((2 H + 1) d + 1). The first nonzero kJ must be

positive to eliminate frequencies from A ~ that are nega-

tives of each other. When there are two fundamentals

(d= 2), this truncation results in a square grid of frequency

indices as illustrated in Fig. l(a).

1 cos qt2 sinaltz. . . cos uK_1t2

1 cos u1t3 sinult~ ..0 cos toK_1t3

11 cos ult~ sinalt~ . . . cos cdK_lt~

The second method of truncation limits the absolute

sum of the indices kj to be less than or equal to H

Ajy(bh,”””, (Ad) = (.+J =klAl+ kz~z+ . . . + kd~~;

d )

kj ~ ~; z Ikjl <H; first nonzero kj must be positive
j=l

}

(8)

where K = 2d–lHd/d!. For d = 2, K = Hz + H+l. When

there are two fundamentals, this truncation produces a

diamond grid as shown in Fig. l(b). Other truncation

schemes are certainly possible. The truncation scheme

directly affects the efficiency and accuracy of the simula-

tion, and should be chosen to fit the particular problem

being solved.

Now that only a finite set of frequencies AK is being

used, the requirement that the fundamental frequencies be

linearly independent over the rationals may be relaxed as

long as each a~ = AK still corresponds uniquely to a valid

sequence of harmonic indices { kj }.

Once A has been truncated to some finite subset AK, it

is possible to represent the waveforms as sequences of

finite length. If we assume that O+= O = AK, then the

number of samples of each waveform must be S = 2K – 1

to uniquely fix the Fourier coefficients. This done, the

Fourier transform becomes a finite-dimensional operator

that depends both on AK and on the S time points used to

sample the waveform. Once the fundamental frequencies

and the truncation scheme are specified, A ~ is fixed, but

we are free to choose the time points as we see fit with the

one constraint that % be invertible.

IV. ALMOST-PERIODIC FOURIER TRANSFORM

A. Matrix Formulation

By considering only a finite number of frequencies, it is

possible to sample a waveform at a finite number of time
points and calculate its Fourier coefficients. Since the

spaces involved are now finite dimensional, the first repre-

sentation theorem of linear algebra shows that the Fourier

transform & and its inverse %-l can be viewed as

matrices acting on the vectors of samples and coefficients,

respectively. That is,

can be sampled at ~ time points, resulting in the set of S

equations and 2 K – 1 unknowns:

sin u~_ Its1[ (9)

LAi?-IJ

If the frequencies u~ are distincl,, and if S = 2K – 1, this

system is invertible for almost all choices of time points,

and can be compactly written as r-1X=x. Inverting I’- 1

gives rx = X. r and r-1 are a discrete Fourier transform

pair.

Given a finite set A ~ of distinLct. frequencies u~, and a

set of time points, we say that r and r‘- 1 are one

implementation of the almost-periodic Fourier transform

for AP(A ~). Once r and 17-1 are known, performing

either the forward (using I’) or inverse (using r – 1) trans-

form just requires a matrix multiply, or (2K – 1)2 oper-

ations; this is the same number of operations required by

the DFT.

The DFT is a special case of (9) with ~~ = ko and

t,= sT/S, i.e., when the frequencies are all multiples of a

single fundamental and the time lpoints are chosen equally

spaced within the period. The DFT and its inverse, the

IDFT, have the desirable property of being well condi-

tioned, which is to say that very little error is generated

when transforming between x and X. From the matrix

viewpoint, the high accuracy of the DFT corresponds to

the fact that the rows of I’- 1 are orthogonal. (We will say

more about this later.) Unfortunately, the DFT and IDFT

are defined only for periodic signals.
For almost-periodic signals, if the time points are not

chosen carefully, 17– 1 can be very ill-conditioned. A par-

ticularly bad strategy for choosing time points when sig-

nals are not periodic seems to be that of making them

equally spaced. Unlike the periodic case, it is in general

impossible to choose a set of time points over which the

sampled sinusoids at frequencies in A ~ are orthogonal. In

fact, it is common for evenly sampled sinusoids at two or

more frequencies to be nearly linearly dependent, which

causes the severe ill-conditioning problems encountered in

practice. One contribution of this article is the develop-

ment of an algorithm for choosing time points that gives a

well-conditioned system. We will! briefly present previous

work and then present our APFT algorithm.

B. Previous Work

Ushida and Chua [10] use equally spaced time points,

but avoid the ill-conditioning prclblem by using extra time
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points. In doing so, the matrix r-1 becomes a tall rectan-

gular matrix. To make the system square again, both sides

of (9) are multiplied by (r – 1)~, which results in

(r-l) Tr-’x= (r-’) TX.

Thus (9) is converted into a least squares problem that is

solved in the traditional manner using the normal equa-

tion. Unfortunately, the normal equation is notoriously

ill-conditioned and so a new ill-conditioning problem may

be introduced.

Gilmore [1] samples the waveform using several small

sets of equally spaced time points. The DFT is applied to

each set individually. The sets are too small to prevent

aliasing in the computed spectra. The aliasing is eliminated

by taking an appropriate linear combination of the com-

puted spectra. Since the DFT is used, the method is

constrained to periodic signals, though it can be much

more efficient than the standard DFT on sparse spectra.

The total number of time points used is normally greater

than the theoretical minimum by about 50 percent. The

numerical stability of this approach is unknown.

C. Condition Number and Orthonormality

It is now necessary to discuss the conditioning of a

system of equations, a concept alluded to earlier. For-

mally, the condition number of a matrix A is defined as

IC(A) = I\A/l 11A‘Ill [12]. The condition number of a matrix

is important because it is a measure of how much errors

can be amplified during the course of solving a matrix

equation. For example, consider solving Ax = b for x

when both A and b are contaminated with error. Write the

contaminated system as

(A+8A)(x+8x)=b+8b.

If \18Al\ and Iltlbll are small, then 118x11can be bounded [12]

with

H<K(A)(ff+H)+higherOrderterms
The problem of ill-conditioning in (9) can be visualized

by considering each equation as defining a hyperplane in

the Euclidean space R 2~- 1. Let p, = R 2K- 1 be such that

~~ is the s th row in r-1; then the ,sth hyperplane is

defined as the set of all points X such that p~X = x(t,).

Thus, p, is a vector orthogonal to the hyperplane. The

solution to (9) is the intersection of all the hyperplanes. If

the system is degenerate because two or more planes are

coincident, then the intersection is not a single point and

the system of equations has an infinite number of solu-

tions. If there are no coincident hyperplanes, but two or

more of the planes are nearly parallel, then a unique

solution exists; however, high-precision arithmetic is

needed to find it accurately.

A matrix is degenerate if and only if there is a linear

dependence among its row vectors, and it is natural to

suppose that a matrix has a small (good) condition number

if its rows are nearly orthonormal (and thus “far” from

being linearly dependent). We now prove this to be true.

Consider an invertible N x N matrix A. Suppose that

the rows a. of A, regarded as vectors, are nearly orthonor-

mal. In particular, suppose that each vector has unit

Euclidean length and that the orthogonal component of

each vector a* with respect to the space S. spanned by the

others is at least a <1 (it would be exactly 1 if the vectors

were precisely orthonormal).

When forming the product A -1A= 1, each row of A -1

can be thought of as the coefficients of a linear combina-

tion of the rows of A. This linear combination yields a row

in the identity matrix— a vector of length 1. Suppose that

the n th element in a row of A – 1 has absolute value

r > I/a. Then the component of the resulting linear com-

bination that is in the direction orthogonal to S’n is de-

termined solely by ran, and will have magnitude greater

than ra >1. Since the linear combination is a vector of

unit length, this is a contradiction. Therefore, no element

of any row of A ‘1, and thus no element of A – 1, has

absolute value greater than I/a.

Since A G R ‘XN, it follows that 11A- Ill ~ (the 1~ norm

of A – 1) is no more than N/a. And since, by assumption,

the Euclidean norm of the rows of A equals one, IIAII ~ < N

(employing the equivalence of the Z2 and 1~ norms in

R ‘), and therefore, IC(A) < N2/a. In short, the near or-

thonormality of a matrix places an upper bound on its

condition number.

Note tha~ multiplying a matrix by a scalar /? does not

affect its condition number, since the norms of the matrix

and its inverse are multiplied by, respectively, ~ and l/~.

Thus, if all rows of a matrix have equal Euclidean length

(not necessarily one) and, when scaled to one, satisfy the

orthonormality property, the matrix is still well condi-

tioned. If the rows of a matrix are nearly orthonormal

after they have been scaled to unit length, we say that they

are (or the original matrix is) nearly orthogonal.

D. Condition Number and Time Point Selection

Given a finite set of frequencies A ~, any set of

S = 2K – 1 time points yields a r-1 whose row vectors

(consisting of a single 1 and a set of sine-cosine pairs)

have Euclidean norms K. Thus, if we could find a set of

time points so that these rows were nearly orthogonal, it

would follow from the discussion above that r – 1, and

therefore r, would be well conditioned.

However the relation between the time points and the

orthogonality of the resultant row vectors is clearly rather

involved; finding a set of times which define nearly or-

thogonal row vectors seems to be quite difficult. One

approach is to write down a priori a set of orthogonal

vectors and then look for time points that generate vectors

close to these prespecified ones; this is equivalent to defin-

ing the approximate phases of each sine wave and looking

for a time where every wave is in the appropriate phase.

This in turn can be thought of as a set of approximate

equalities modulo 2 v, but it is far from clear under what

circumstances a solution exists or how to go about finding

it.



KUNDERT t?? d.: APPLYING HARMONIC BALANCE TO ALMOST-PERIODIC CIRCUITS 373

Another approach is to choose time points equally spaced

within a time interval larger than the period corresponding

to the smallest nonzero frequency in A ~. As we discuss

later, however, experience shows that this method of time-

point selection gives the worst results of any method we

tried.

E. Condition Number and Truncation Error

As mentioned previously, the condition number pro-

vides a measure of how much the error is amplified during

a calculation. Roundoff is one source of error in the

transform, but there is another that is normally much

larger-the error due to truncating A to A ~ (this error is

referred to as aliasing when using the DFT). The Fourier

coefficients of the frequencies omitted from A are pre-

sumably small but may not be exactly zero, and thus these

frequencies contribute to the vector x of samples; this

contribution is unaccounted for in the calculation of r-l

and 17. Because of this, the computation of X will be in

error.

Fortunately, this error can be bounded. Suppose that the

overlooked sinusoids contribute an error 8X to the ob-

served sample vector x + 8x. From this we calculate the

Fourier coefficients X+8X using

x+dx=r(x+tk).

By construction we know that X= rx. Thus, 8X= I’8x,

and I18XII <111’11118x11.By definition, IC= Ilrll Ilr-lll. It is

easily shown that K < llr-lll~ < fiK, so Ilrllm < Km/K

and

Ipxllm< ;Ilaxllm. ‘

That is, Km/K is the upper bound on how much the error

due to coefficients of truncated frequencies is amplified in

the process of transforming a waveform to the frequency

domain. In practice, error amplification factors often ap-

proach this bound, so it is very important to select a set of

time points such that K is small.

V. THE APFT ALGORITHM

A. Time Point Selection

Our time point selection algorithm, referred to as near-

orthogonal selection, was conceived using some of the ideas

discussed above.

First, we thought that if selecting evenly spaced time

points was likely to yield row vectors particularly close to

being linearly dependent, we might be better off selecting

time points randomly from a time interval larger than the

period corresponding to the smallest nonzero frequency in

AK. (We chose an interval equal to three times this period.)

Such a choice is particularly attractive given the complex-
ity of the relationship between the time points and the

orthogonality of the row vectors; making any more intelli-

gent choice of time points seems quite difficult.

Second, we realized that in essence the problem in

recovering X from x is that the linear system may be close

to being underdetermined, in a numerical sense. So adding

additional equations should increase the accuracy of the

calculation of X. In fact, if more than S time points are

chosen, I’ – 1 becomes a tall rectangular matrix, and its

pseudoinverse r is a wide rectangular matrix satisfying

x= rx.

Oversampling with twice as many randomly selected

time points as theoretically necessary proves to be success-

ful: it yields a very well conditioned system. However,

when using the transform in the context of harmonic

balance, all the nonlinear devices must be evaluated at

each time point. This is an expensive operation because of

the complexity of the nonlinear device models. Thus, over-

sampling is a costly remedy. It is, clear, however, that the

rows of the tall I’ – 1 matrix span the space well (in a

numerical sense). Perhaps some carefully chosen subset of

these rows might also suffice.

The near-orthogonal selection algorithm takes just this

approach; from a r-1 whose dimension is M rows by S

coh.mms, where S = 2K – 1 and M > S, it selects a set of

just S rows, thus requiring no extra time samples. In other

words, from a pool of more row candidates then necessary

(we chose M= 2S, which seems to give good results in

practice) and their corresponding time points, a “good”

minimal set is selected during the initialization of the

algorithm. When actually performing the transform, only

the minimal set of time points is used. With harmonic

balance, all nonlinear devices are evaluated at each time

point. That only the minimum number of time points is

used, and not 1.5 to 2 times the minimum as required by

the other methods, is one of the significant advantages of

the APFT algorithm.

The near-orthogonal selection algorithm is a variation of

the Gram–Schmidt orthogonalization procedure [13]. Its

input is the matrix formed by randomly choosing twice as

many time points as necessary and forming the corre-

sponding row vectors, p,. Initially, these vectors all have

the same Euclidean length (i.e., lZ norm). One of these

vectors, say PI, is chosen arbitrarily. Any component in the

direction of PI is removed from the remaining vectors

using

PTPS
Ps+-P, -yPl> S=2,. ... M. (lo)

PIP1

The vectors that remain are now orthogonal to pl. Since

the vectors initially had the same length, the largest re-

maining vector was originally most orthogonal to P1.Itk

chosen to play the role of PI for the next iteration of the

algorithm. This process repeats until the required S vec-

tors have been chosen. The time points that correspond to

these vectors are the time points used to form I’- 1. This

algorithm is detailed below.

APFT Near-Orthogonal Selection Algorithm

Given:
A~={O,O1, Q2,. 0”, u~_ ~}, the set of frequencies.

Task:

To find a set of S = 2K – 1 time points that results in a

well-conditioned r-1.
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Algorithm:

@~i.e ‘in({l~kl: l<k < K})
for(s+l,. ... il4)

{ random () returns numbers un~ormly distributed &-

tween O and 1.
6r

t, G — random ()
umin

P!) G

[l,cosult,,sinult,, . . . ,costi~_lt,,sinti~_ lt~]~

}
for(r+-l,. ... S)

{ argmax () returns the index of the largest member of a

set.

k=argmax({llp~r) ll: r <s < M})
~~ap (p$l), ~~))

Swap(p$’), p~))

‘Wap(tr! ‘k)
for(s~r+l,. ... M)

p$r)Tpjr)

~(r+l) ~ p(~) _ _ ~(r)
s s ~$r)Tp;r) r

}
Results:

The set {t,: 1 <s < S } contains the desired time points.

Once the time points are selected, J7-1 is constructed

with the rows p~l) for s = 1,. ... S. It is easy to verify that

the time points are well chosen either by calculating the

condition number ~ = II171I IIr - l] I or by computing the

numerical error c = IIr – 11’ – 1I1; both are excellent mea-

sures of the numerical stability of the transform.

B. Constructing the Transform Matrix

There is another problem that up to now we have

ignored. The arguments to the sine and cosine functions

in (9) are potentially very large, which results in excessive

roundoff error. For example, assume Al = 2n109 and A ~ =

2T(109 + fi). Then Um = 27rfi and so the time points

fall between O and 3/fi seconds. Thus, tilt,can be as

large as 1011, causing two problems. First, on most com-

puter systems, the trigonometry routines are not designed

to handle such large arguments and often return meaning-

less results. This problem is easily avoided by subtracting

from the argument as many multiples of 2T as possible

without making it negative. The second problem is more

troublesome. The approximately 1010 multiples of 2n in
the argument have no effect on the result except to reduce

its accuracy by about 10 digits. Since the ult,product

must be formed (and so truncated to a finite number of

digits by the computer) before the multiples of 27T can be

removed, the digits are lost and cannot be reclaimed.

While this error cannot be eliminated, it can be controlled

by assuming A ~ is a truncated module (note that up to

now we have placed no restrictions on the frequencies in

AK except that they be distinct and that O.= O). From (4),

the product alt,can be written

j=]

Let

At

()
+j,= fract ~ , l<j<d; l<s<S (11)

and

Now CP,,= tilt,– 2~m, where m is some integer and

1+1.1< 2~Z~=llk,l. Since the kj are small integers, Ols is
an appropriate argument to trigonometry routines on all

computers. Because the product t,Aj/2T is formed before

the fract operator (which removes any integer portion and

leaves only the fractional part) is applied, it is the domin-

ant source of roundoff error. By using (11) and (12), the

roundoff error can be viewed as resulting from roundoff

error in the Aj and t..Since the t, are chosen randomly,

their roundoff errors are of no concern.

C. APFT Algorithm Results

The APFT near-orthogonal selection algorithm requires

on the order of M2S operations, where M is the number of

time point candidates used, and S = 2K – 1, where K is

the number of Fourier coefficients. Since we have used

M = 2S, the asymptotic complexity of the algorithm is the

same as that of the matrix inversion needed to compute I’.

We note that while the initialization of the APFT (that

is, the time point selection, the formation of r – 1, and the

inversion of r – 1 to find I’) requires on the order of S 3

operations, the actual forward and inverse transform re-

quires S2 operations, the same as the DFT. Thus, the

expensive part of the APFT is performed only once per set

of frequencies; after this initial overhead has been paid,

the APFT is as efficient as the DFT.

To show the numerical stability of our method, we

compare the condition number of r – 1 when time points

are 1) evenly spaced, 2) randomly spaced, and 3) de-

termined by the near-orthogonal selection algorithm. The

condition number K is roughly proportional to the errors

in computing the inverse. On our computer, c =10 – lCIC.

Bear in mind that even the DFT, which is theoretically the

best conditioned algorithm for the simpler periodic case,

has a condition number K = N, so the best we can hope for

is linear growth of the condition number with the number

of Fourier coefficients. Observe that, as shown by the
results given in Fig. 2, the condition number from near-

orthogonal selection is experimentally observed to grow

linearly with K. That of random selection appears to grow

quadratically, and that of evenly spaced grows exponen-

tially.

The example chosen for comparison was with two

fundamentals AI= 2n109 and A2 = 2n(109 + V). Thus,

the fundamentals differ by only 1 part in 109; also, be-

cause the fundamentals are incommensurable, the signal is

not periodic. Truncation was performed using (8). Com-

parisons of the condition numbers are shown in Fig. 2 with

the order H varying between 1 and 10. To smooth the

wide variation seen in the results for the case of randomly
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Fig. 2. Condition rmmberof r–l versus order H for the two funda-
mental APFT with truncation performed using (8) and time points
chosen evenly spaced, randomly; and using the-ne~-orthogonal-selec-
tion algoriti. -

TABLE I
ERROR ESTIMATES AND EXECUTION TIMESFOR THE APFT,

ALGORITHM USING DOURLE PRSCISION ARITHMETIC

ON A VAX 8650

APFT Summary

>

H

i-

2

3
4

5

6
7

8
9
10—

3
7

13

21

31
43

57
73

91
111

*

s
5

13

25

41

61

85
113

145
181
221

‘+ti,
K

6
24

64

113

143

270
420
790

950
1200

Uncaticm ;

E

2.8x10_17

8.3xl@7
1.1X1O-16

1.6x10_16

L1X1O-16

2.3xl@6
2.9X1O-

3.3X1O-16
4.8xl&16
4.6xl@c

brined u

17 ms

67 rns
280 ms

1.1 s

3.3 s

8.6 s
20 s
41 s

79 s
142 S

o
0.3 ms

1.7 ma

3.6 ms

8.5 ms

17 ms

30 ms
49 ms
77 ms
116 rns

H is the number of harmonics of each fundamental K is the totaf
number of frequencies, and S is the number of time samples. K is the
condition number of r-l and c = Ill_- lr – Ill. f,.,, is the time required
to choose the time points and form ‘&d invert” r:r.’ tlra.,fO,~ is the time
required to multiply either r– 1 or r by a vector.

selected time points, each condition number plotted is the

geometric mean of 10 trials. Similarly, because different

intervals give widely varying results for evenly spaced

points, those condition numbers are geometrically aver-

aged over 10 intervals ranging from 1.5 to 4.5 times

2m/cOti Results obtained from near-orthogonal selection

are so consistent that no averaging was needed, as evi-

denced by the smoothness of that curve. Graphing the

condition number clearly shows that both randomly cho-

sen and equally spaced samples have accuracy problems

when the number of frequencies is large. Near-orthogonal

selection from 2S randomly selected time points always

results in a reasonable condition number. Table I gives a
summary of information on the APFT with the near-

orthogonal selection algorithm. Execution times were mea-

sured using the C programming language on a VAX 8650

running ULTRIX 2.0.

Recall that coefficients of frequencies not in A ~ can be

amplified by up to K/K. For order H =10, this amplifica-

tion factor equals approximately 108 for evenly spaced

points, 2000 for randomly spaced points, and 10 for points

chosen using near-orthogonal selection. Thus, even if the

coefficients of neglected frequencies are small, for evenly

and randomly spaced points, the error 8X due to trunca-

tion may be so large as to dominate over the desired

coefficients X.

VI. HARMONIC NEWTON

A. Derivation

As shown earlier, the circuit equation

f(v, t)=i(v(t))+~(v(t))

+~ Y(t-~)v(t)~~+~(t) ‘o (13)
—m

can be written in the frequency domain as

F(V) =I(V)+QQ(V) -+YV+U=O. (14)

To evaluate the nonlinear devices in (14) it is necessary

to convert the node voltage spectrum V into the waveform

v and evaluate the nonlinear devices in the time domain.

The response is then converted hack into the frequency

domain. Now that we have developed the APFT, it can be

used with (14) to allow harmonic balance to be applied to

almost-periodic systems. Assume that v, u = AP~(A~) and

that a set of time points {to, 11,.00,t2K_1} h been

chosen so that 1?– 1 is nonsingular. Then V. = Il., I.(V)

= I’in(u), and Qn(V) = r~ntv).

Applying Newton–Raphson to solve (14) results in the

iteration

J(v(j))(v(j+l) – W) = – F(v(j)) (15)

where

Or

[1dF~(V)
J(V) = [Jmn(v)] = ~v , m,n={l,2,. ... N)

n

where

dF~(V) dl~(V) dQ~(V) + y

61vn = avn
,+Qmn

avn m“”

The derivation of 6’1#9 V. follclws with help from the

chain rule:

Using the fact that r- lVn = v.,

aim(v) =raim(v)
~--r-l.

aVn n
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The derivation of dQ~/13 V. is identical. Now everything

needed to evaluate (15) is available. If the sequence gener-

ated by (15) converges, its limit point is the desired solu-

tion to (14).

B. Acceleration of Harmonic Newton

Of the time spent performing harmonic Newton, most is

spent constructing and factoring the Jacobian J(V). There

are two things that can be done to reduce this time. First is

to employ Samanskii’s method [14]; simply reuse the fac-

tored Jacobian from the previous iteration. This eliminates

the construction and LU decomposition of the Jacobian,

and so only the forward and backward substitution steps

are needed. If the circuit is behaving nearly linear, then a

Jacobian may be used many times. If, however, the

Jacobian is varying appreciably at each step, then

Samanskii’s method might take a bad step and slow or

preclude convergence. To decide how many times to use an

old Jacobian, III’(V) \I should be monitored, and a new

Jacobian computed if the norm is not sufficiently reduced

at each step.

The second way to improve the harmonic Newton al-

gorithm is to exploit the sparsity of the Jacobian. The

Jacobian is organized as a block node admittance matrix

that is sparse. Conventional sparse matrix techniques can

be used to exploit its sparsity [15]. Each block is a conver-

sion matrix that is itself a block matrix, consisting of 2 X 2

blocks that result from Fourier coefficients being members

of C. Conversion matrices are full if they are associated

with a node that has a nonlinear device attached; other-

wise they are diagonal. In an integrated circuit, nonlinear

devices attach to most nodes, so the conversion matrices

will in general be full. It often happens, though, that

nonlinear devices are either not active or are behaving very

linearly. For example, the base–collector junction of a

bipolar transistor that is in the forward-active region is

reverse biased, and so the junction contributes nothing to

its conversion matrices. If there are no other contributions

to those conversion matrices, they may be ignored. If there

are only contributions from linear components, they are

diagonal. During the decomposition, it is desirable to keep

track of which conversion matrices are full, which are

diagonal, and which are zero, and avoid unnecessary oper-

ations on known zero conversion matrix elements.

Experimentally, the computational complexity of the

LU decomposition of the block Jacobian matrix is

0( N“K 3), where typically 1.1< a <1.5 and K increases as

O(H~), and so the computational complexity of the

harmonic Newton algorithm is 0( NaH3~). The amount of

memory required is 0( N“H2d ). Clearly, the cost of

harmonic Newton increases very rapidly as either H, the

number of harmonics considered, or d, the number of

fundamentals, grows. There are other algorithms, such as

harmonic relaxation [4], that do not suffer from such a

dramatic increase in resource needs, but these methods will

have convergence problems with circuits that behave in a

strongly nonlinear way.

+ v~fJT –

“N+Tv’N-
Fig. 3. GAs double bafanced mixer.

‘IN~~_vi?lAS

Fig. 4. GaAs traveling wave ampfifier.

C. Harmonic Newton Results

The APFT algorithm has been integrated into

Harmonica, 4 our harmonic balance circuit simulator.

Harmonica was then used to simulate two GaAs FET [16]

circuits. The first is the double-balanced mixer shown in

Fig. 3. It is driven with a 50 mV, 5 GHz RF input signal

and a 500 mV, 5.001 GHz LO input signal. The output is

at 1 MHz and passes through a high-Q 1 MHz bandpass

lattice filter. The circuit consists of six GRAS FET’s and 27

nodes and was simulated with order H = 5, which corre-

sponds to 31 frequencies. Harmonica required 4.5 mega-

bytes of physical memory, 7.9 megabytes of virtual mem-

ory, and 230 seconds on a VAX 8650 to complete the

simulation. The circuit, with the center frequency of the

output filter adjusted accordingly, was also simulated with

the LO frequency set as close as 1 Hz away from the 5

GHz RF with no apparent change in accuracy. Note that

the combination of the widely separated frequencies and

the high-Q output filter make it prohibitively expensive to

find the steady-state response of this circuit with a time-

domain simulator.

The second circuit is the GaAs FET traveling wave

amplifier shown in Fig. 4 [17], which is being tested for

intermodulation distortion. This circuit is driven by a

two-tone input signal; one tone was 200 mV at 10 GHz

and the other was 200 mV at 10.4 GHz. The response is

shown, both in the time and the frequency domain, in Fig.

4Harmonzca, which is a general-purpose circurt simulator, is expected
to be released into the public domain in source code form in early 1988.
It should not be confused with a program of the same name being
advertised by Compact Software.
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Fig. 5. GaAs traveling wave amplifier response to two-tone input.

TABLE II
EXECUTION TIMES AND MEMORY REQUIREMENTS FOR Harmonica

RUNNING AN INTERMODULATION

DISTORTION TSST ON THE GRAS TRAVELING

WAVS AMPLIFIER SHOWN IN FIG. 4

Usi

1

2

3

4

5

6

7—

—

Ga& Traveling Wave Amplifier

H K time

I

physical virtual

memorv memorv

Using AK generated by (7).

1 5 0.63 S 0.55 MB
2 13 4.2 S 0.87 MB
3 25 24s 2.2 MB

4 41 98 S 7.5 MB

5 I 61 320 S 7.6 MB

; AA

3
7
13

21

31

43

57—

~enerated by (8).
0.35 s

1.3 s

4.4 s

15.6 S

43 s

110 s

y5 s

0.50 MB
0.50 MB
0.87 MB
2.2 MB
2.3 MB
7.5 MB
7.6 MB

0.78 MB
1.5 MB

3.9 M%

14 MB

14 MB

0.80 MB

0.80 MB

1.5 MB

3.9 MB

4.0 MB
14 MB

14 MB

H is the number of harmonics of each fundamental and K is the totaf
number of frequencies.

5. The circuit was simulated with H = 5 using the trunca-

tion scheme given in (7). The computation time and mem-

ory requirements for several values of H and for both

truncation schemes are shown in Table II. There are a few

comments that must be made to clarify some of the results

in the table. The memory allocator expands array sizes in
factors of two, which is why memory requirements some-

times do not change even though H changes. Each dou-

bling of the array size quadruples the amount of memory

required. Most of the approximate factor of two dif-

ferences between physical and virtual memory require-

ments can be eliminated by better implementation. Any

—
60 80

GH.r

(b)

simulation that needed over 64 frequencies required more

memory than the 44 megabytes available from the operat-

ing system.

VII. CONCLUSIONS

A new almost-periodic Fourier transform that is both

efficient and accurate was presented. This transform was

combined with harmonic balance to allow circuits with

widely separated frequencies to be accurately simulated.

Work is continuing on the APFT and its application in

harmonic balance to better understand the algorithm, to

further increase its efficiency, and to explore its error

mechanisms.
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